我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

射孔管柱振动参数实测及其ALE数值仿真分析

《应用力学学报》[ISSN:1000-4939/CN:61-1112/O3]

期数:
2019年02期
页码:
458-465
栏目:
出版日期:
2018-12-18

文章信息/Info

Title:
Measurement of perforating column vibration parameters and ALE-based numerical simulation
作者:
李明飞1徐绯1窦益华2
1 西北工业大学 航空学院 710072 西安;2 西安石油大学 机械工程学院 710065 西安
Author(s):
Li Mingfei1 Xu Fei1 Dou Yihua2
1 College of Aeronautics, Northwestern Polytechnical University, 710072, Xi’an, China; 2 College of Mechanical Engineering, Xi’an Shiyou University, 710065, Xi’an, China
关键词:
管柱震动测试器研发与实测射孔管柱震动加速度ALE仿真
分类号:
TE932
DOI:
10.11776/cjam.36.02.C040
文献标识码:
A
摘要:
射孔爆轰产生的强冲击波作用于射孔段管柱,常发生管柱塑性弯曲、震弯、震断等事故。为了得到射孔管柱振动的关键参数,阐明射孔爆轰冲击下管柱的动力响应规律,以油田常用7″?12.65mm P110套管和2 7/8″?7.82mm P110油管管柱组合为例,应用ANSYS软件的AUTODYN模块,建立了长度为11m的有限元瞬态模型。用EULER模型描述作为固壁边界的套管和射孔段管柱,用EULER-MULTIMATERIAL描述大变形射孔液和发生固液相变的射孔弹,模拟射孔液的剧烈运动以及射孔液与套管、管柱的流固耦合作用,从有限元分析结果中提取射孔液压力脉动和管柱振动的关键数据;自主研发射孔压力和管柱震动测试器,实测环空射孔液压力脉动、射孔管柱震动速度和加速度;将数值分析结果与实测结果进行对比,分析射孔段管柱的震动规律。研究表明,近封隔器管柱处应力值更大,验证了射孔管柱常在近封隔器处震弯、震断的原因推断。射孔液峰值压力实测结果和数值分析结果分别为174.8MPa和191.4MPa,二者相差9.5%。实测和数值分析轴向加速度沿上下两个方向的最大值分别为178.4m/s2、169.5m/s2和189.1m/s2、155.2m/s2,实测与有限元分析结果对应相差分别为6.0%和8.4%,说明应用Euler和EULER-MULTIMATERIAL耦合算法模拟射孔爆轰的计算满足精度要求,方法可行。本文数值方法的分析结果可以指导现场施工。

参考文献/References

[1] HILL R J,JARVIE D M,ZUMBERGE J,et al.Oil and gas geochemistry and petroleum systems of the Fort Worth Basin[J].AAPG bulletin,2007,91(4):445-473. [2] SUNESON N H.Arkoma basin petroleum-past,present,and future[J].Oklahoma city geological society,2012,63(1):38-70. [3] CARLOS Baumann,HARVEY Williams.Perforating high-pressure deepwater wells in the gulf of Mexico[C]//Proceedings of Society of Petroleum Engineers-SPE Annual Technical Conference and Exhibition.Denver CO,United States:SPE,2011:2744-2756. [4] 黄显辉,窦益华,许爱荣,等.高温高压深井射孔卡枪原因分析及对策[J].石油机械,2008,36(9):182-184.(HUANG Xianhui,DOU Yihua,XU Airong,et al.The cause analysis and countermeasures of perforating gun in high temperature and high pressure deep well[J].Petroleum machinery,2008,36(9):182-184(in Chinese)). [5] 窦益华,徐海军,姜学海,等.射孔测试联作封隔器中心管损坏原因分析[J].石油机械,2007,35(9):113-115.(DOU Yihua,XU Haijun,JIANG Xuehai,et al.Cause analysis of the damage of the central tube of the perforating test coupling packer[J].Petroleum machinery,2007,35(9):113-115(in Chinese)). [6] BRAITHWAITE M,SHARPE G J,CHITOMBO G P.Simulation of real detonations as an energy source term for the hybrid stress blasting model[C]//Proceedings of the 9th International Symposium on Rock Fragmentation by Blasting,FRAGBLAST 9.Granada,Spain:CRC Press,2009:327-333. [7] ASHANI J Z,GHAMSARI A K.Theoretical and experimental analysis of plastic response of isotropic circular plates subjected to underwater explosion loading[J].Materialwissenschaft und werkstofftechnik,2010,39(2):171-175. [8] GHOSHAL R,MITRA N.Non-contact near-field underwater explosion induced shock-wave loading of submerged rigid structures:nonlinear compressibility effects in fluid structure interaction[J]. Journal of applied physics,2012,112(2):287-303. [9] KAN K K,STUHMILLER J H,CHAN P C.Simulation of the collapse of an underwater explosion bubble under a circular plate[J].Shock & vibration,2013,12(3):217-225. [10] ZAMANI J,SAFARI K H,GHAMSARI A K,et al.Experimental analysis of clamped AA5010 and steel plates subjected to blast loading and underwater explosion[J].Journal of strain analysis for engineering design,2011,46(46):201-212. [11] 刘建湖.舰船非接触水下爆炸动力学的理论与应用[D].北京:中国船舶科学研究中心,2002.(LIU Jianhu.Theory and application of non contact underwater explosion dynamics of ships[D].Beijing:China Shipbuilding Science Research Center,2002(in Chinese)). [12] FOLLETT S,HAMEED A,DARINA S,et al.Numerical simulations as a reliable alternative for landmine explosion studies:the AUTODYN approach[C]//Proceeding of ASME 2010 International Mechanical Engineering Congress and Exposition.Vancouver,BC,Canada:ASME,2010:367-374. [13] LIU Kezhong,XU Gengguang,Xin Chunliang,et al.Research on numerical simulation in underwater explosion by AUTODYN[J]. Blasting,2009,26(3):18-21. [14] KIM E S,KIM J H,SHIM J H,et al.A forensic engineering study on evaluation of explosive pressure and velocity for LNG explosion accident using AUTODYN[J].Journal of the Korean society of safety,2015,30(4):56-63. [15] BAUMANN C,BARNARD K,ANBAO L,et al.Prediction and reduction of perforating gun shock loads[C]//Proceedings of Society of Petroleum Engineers-International Petroleum Technology Conference. Beijing:SPE,2013:2565-2573. [16] BAUMANN C,LAZARO A,VALDIVIA P,et al.Perforating gun shock loads:prediction and mitigation[C]//Proceedings of SPE/IADC Drilling Conference and Exhibition.Amsterdam,Netherlands:SPE,2013:1502-1519. [17] 于振东,李艳.试油测试射孔管柱的间隙元分析[J].应用力学学报,2003,20(1):73-77.(YU Zhendong,LI Yan.Gap element analysis of perforated pipe column for oil test[J].Journal of applied mechanics,2003,20(1):73-77(in Chinese)). [18] 夏成宇,孙巧雷,冯定,等.液压环境下流体对管柱单元XYZ方向作用力分析[J].应用力学学报,2016,33(2):215-222.(XIA Chengyu,SUN Qiaolei,FENG Ding,et al.Force analysis in pipe string unit with hydraulic conditions in XYZ direction[J].Chinese journal of applied mechanics,2016,33(2):215-222(in Chinese)). [19] ORTEGA R,LORÍA A,ING P J N D,et al.Passivity-based control of Euler-Lagrange systems[J].Adaptive disturbance attenuation friction compensation,1998,26(3):75-92. [20] LAIRD A R,FOX P M,PRICE C J,et al.ALE meta-analysis:controlling the false discovery rate and performing statistical contrasts[M].New York:Human Brain Mapping,2005:155-164. [21] GOOCH J W.Ball charge[M].New York:Springer,2011:64-64. [22] BELLITTO V,MELNIK M,SHERLOCK M,et al.The microstructure characteristics of RDX and their effect on the detonation velocity[C]//Proceeding of APS Shock Compression of Condensed Matter Meeting.St.Louis,Missouri:AIP,2017. [23] SOFRYGINA O A,ZHUKOVA S Y,BITYUKOV S M,et al. Economical steels for the manufacture of high-strength oil pipe(according to the API Spec5CT standard)[J].Steel in translation,2010,40(7):616-621.

备注/Memo

备注/Memo:
-
更新日期/Last Update:
新金沙指定投注正网-金沙指定开户平台-澳门金沙官方网址多少