我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

大跨斜拉桥拉索面内参数振动简化模型及工程应用

《应用力学学报》[ISSN:1000-4939/CN:61-1112/O3]

期数:
2019年02期
页码:
438-443
栏目:
出版日期:
2018-12-18

文章信息/Info

Title:
FEM analysis and experimental study on planar parametric oscillations of the stayed cable
作者:
方豪杰王修勇罗一帆孙洪鑫彭剑
湖南科技大学 土木工程学院 结构抗风与振动控制湖南省重点实验室 411201 湘潭
Author(s):
Fang Haojie Wang Xiuyong Luo Yifan Sun Hongxin Peng Jian
Hunan Provincial Key Laboratory of Structures for Wind Resistance and Vibration Control, College of Civil Engineering, Hunan University of Science and Technology,411201, Xiangtan, China
关键词:
桥梁工程斜拉索参数振动有限元仿真分析实验
分类号:
U441+.3
DOI:
10.11776/cjam.36.02.C002
文献标识码:
A
摘要:
斜拉索是斜拉桥的重要受力构件,当索梁耦合振动时,斜拉索易发生大幅的参数振动。本文提出了一个不计拉索垂度并忽略桥梁自重影响的单自由度力学模型,推出了斜拉索参数振动的简化分析方程。为了考察方程的可行性,利用计算机对该方程进行了仿真,并与另一考虑索桥耦合作用运动方程的仿真分析作了对照,得到了非常相近的结果。基于实验室24.2m的模型斜拉索,辨识了该拉索的固有频率和阻尼,通过试验实现了该斜拉索的一阶参数振动,并分析了发生一阶参数振动时激励频率与固有频率比值。另外运用本文提出的简化方程对实验室拉索作了仿真,得到了参数振动现象,与实验结果对比得到:利用简化分析模型对试验拉索的仿真分析与实验室拉索的实验结果比较吻合,表明不考虑桥梁质量的简化模型具有足够的准确性。最后,结合工程实例,对鄂东大桥的某一可能发生参数振动的拉索进行了仿真分析,表明在桥梁自重较重时本文所提出的简化方程具有较好的适用性;并且发现加装阻尼器可以有效抑制拉索的参数振动。

参考文献/References

[1] 任淑琰.斜拉桥拉索参数振动研究[D].上海:同济大学,2007.(REN Shuyan.Parametric oscillation of cables in cable-stayed bridges[D].Shanghai:Tongji University,2007(in Chinese)). [2] KOVACS I.Zur frage der seilschwingungen und der seildämfung[J].Bautechnik,1981,59(10):325-332. [3] PACHECO B M,FUJINO Y,SULEKH A.Estimation curve for modal damping in stay cables with viscous damper[J].Journal of structural engineering,1993,119(6):1961-1979. [4] FUJINO Y,WARNITCHAI P,PACHECO B M.An experimental and analytical study of auto parametric resonance on a 3 DOF model of cable-stayed-beam[J].Nonlinear dynamics,1993,4(2):111-138. [5] COSTA P D,MARTINS J A C.Oscillations of bridge stay cables induced by periodic motions of deck and/or towers[J].Journal of engineering mechanics,1996,12(7):613-622. [6] 黄迪山,张月月.参数振动自由响应的指数三角级数逼近[J].应用力学学报,2016,33(6):936-941.(HUANG Dishan,ZHANG Yueyue.Exponential trigonometric series approach to free response of parametric vibration[J].Chinese journal of applied mechanics,2016,33(6):936-941(in Chinese)). [7] 黄迪山,邵何锡.多自由度参数振动受迫响应的三角级数逼近[J].应用力学学报,2014,31(5):703-709.(HUANG Dishan,SHAO Hexi.Vector trigonometric series approach to forced response of a multiple freedom parametric vibration[J].Chinese journal of applied mechanics,2014,31(5):703-709(in Chinese)). [8] 汪峰,文晓旭,刘章军.斜拉桥塔-索-桥面连续耦合参数振动特性分析[J].应用力学学报,2015,32(2):340-346.(WANG Feng,WEN Xiaoxu,LIU Zhangjun.Coupled vibration analysis of tower-cable-deck of long-span cable-stayed bridge[J].Chinese journal of applied mechanics,2015,32(2):340-346(in Chinese)). [9] KANG Zhan,XU Kesheng ,LUO Zhen.A numerical study on nonlinear vibration of an inclined cable coupled with the deck in cable-stayed bridges[J].Journal of vibration and control,2011,18(3):404-416. [10] 亢战,钟万勰.斜拉桥参数共振问题的数值研究[J].土木工程学报,1998,31(4):14-22.(KANG Zhan,ZHONG Wanxie.Numerical study on parametric resonance of cable in cable stayed bridge[J].China civil engineering journal,1998,31(4):14-22(in Chinese)). [11] 汪志刚,孙炳楠.斜拉索的参数振动[J].土木工程学报,2002,5(5):28-33.(WANG Zhigang,SUN Bingnan.Parametric vibration of the cable in cable-stayed bridge[J].China civil engineering journal,2002,5(5):28-33(in Chinese)). [12] 赵跃宇,吕建根.索-拱组合结构中斜拉索的非线性参数振动[J].土木工程学报,2006,39(12):67-72.(ZHAO Yueyu,LÜ Jian’gen.Non-linear parametric vibration of cables in cable-arch composite structures[J].China civil engineering journal,2006,39(12):67-72(in Chinese)). [13] 陈丕华,王修勇,陈政清,等.斜拉索面内参数振动的理论和试验研究[J].振动与冲击,2010,29(2):50-53.(CHEN Pihua,WANG Xiuyong,CHEN Zhengqing,et al.Theoretical and experimental study on planar parametric oscillations in a stayed-cable[J].Journal of vibration and shock,2010,29(2):50-53(in Chinese)).

备注/Memo

备注/Memo:
-
更新日期/Last Update:
新金沙指定投注正网-金沙指定开户平台-澳门金沙官方网址多少