我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

两端固支各向同性叠合岩梁受均布荷载的弹性力学解

《应用力学学报》[ISSN:1000-4939/CN:61-1112/O3]

期数:
2019年02期
页码:
431-437
栏目:
出版日期:
2018-12-18

文章信息/Info

Title:
Elastic solution of clamped laminated rock beam under uniformly distributed load
作者:
王妍姚多喜鲁海峰蒋正
安徽理工大学 地球与环境学院 232001 淮南
Author(s):
Wang Yan Yao Duoxi Lu Haifeng Jiang Zheng
School of Earth and Environment, Anhui University of Science & Technology, 232001, Huainan, China
关键词:
叠合岩梁两端固支边界条件均布荷载应力函数法
分类号:
P64
DOI:
10.11776/cjam.36.02. B031
文献标识码:
A
摘要:
层间岩体存在着一组优势贯穿结构面,将层状岩体视为叠合岩梁求解力学问题,若只考虑无层间滑动的叠合岩梁并不满足工程实例的实际情况。为此,以软硬岩双层叠合固支岩梁为例,运用弹性力学中应力函数法,推导出叠合岩梁受均布荷载作用时的应力及位移表达式。在此基础上,探讨了软硬岩厚度、组合方式以及层间摩擦对其应力分布的影响,并将计算结果与FLAC3D数值解进行了对比。研究结果表明:水平位移在岩体分层处出现数值“跳跃”现象,垂直位移沿岩体走向呈抛物线变化;软硬岩组合方式对水平应力和剪应力影响较小,两者最大误差与最小误差的差值分别为1.4%和2%,对垂直应力影响较大,其最大误差与最小误差的差值可达8.2%;层厚对三种应力分布影响较小,但应力随着层间摩擦的增大而增大。实例中数值解与弹性理论解最大误差为9.8%,基本吻合,表明理论解析解可信度较高。

参考文献/References

[1] 贾蓬,唐春安,王述红.巷道层状岩层顶板破坏机理[J].煤炭学报,2006,31(1):11-15.(JIA Peng,TANG Chun’an,WANG Shuhong.Destroy mechanism of tunnel with stratified roof[J].Journal of China coal society,2006,31(1):11-15(in Chinese)). [2] 李德海.近水平层状岩层移动规律的探究[J].采矿与安全工程学报,1996(2):39-42.(LI Dehai.Research on the movement of near horizontal layered rock[J].Journal of mining & safety engineering,1996(2):39-42(in Chinese)). [3] 袁梅.钢-混凝土组合梁的横向正应力和整体稳定性研究[D].南京:河海大学,2005.(YUAN Mei.Research on the transverse normal stress and total stability of steel concrete composite beams[D].Nanjing:Hohai University,2005(in Chinese)). [4] 雷聪,万水,王毅力.波形钢腹板组合梁与钢桁腹组合梁的安全性能和使用性能研究[J].世界桥梁,2015,43(4):30-36.(LEI Cong,WAN Shui,WANG Yili.Study on safety performance and performance of composite beams with corrugated steel web and steel truss[J].World bridge,2015,43(4):30-36(in Chinese)). [5] 何光辉.基于高阶梁理论的双层组合梁动静力响应分析[D].上海:上海大学,2015.(HE Guanghui.Analyses on dynamic and static responses of two-layer composite beams using higher order beam theories[D].Shanghai:Shanghai University,2015(in Chinese)). [6] 曾辉,谭智丰,夏仲林,等.钢-铝叠合梁力学性能试验分析与研究[J].工程与试验,2012,52(1):28-30.(ZENG Hui,TAN Zhifeng,XIA Zhonglin,et al.Experimental analysis and study on mechanical capability of steel-aluminum congruence beam[J].Engineering and test,2012,52(1):28-30(in Chinese)). [7] 程俊瑞,李真.钢-混叠合梁在旧桥改造设计中的应用[J].公路,2014(7):241-244.(CHENG Junrui,LI Zhen.Application of steel mixed composite beam in old bridge reconstruction design[J].Highway,2014(7):241-244(in Chinese)). [8] 吴波.钢混凝土叠合梁安装施工[J].城市道桥与防洪,2015(10):36-38.(WU Bo.Installation construction of steel-concrete combined girder[J].Urban roads bridge and flood control,2015(10):36-38(in Chinese)). [9] 刘一华,朱立军.双材料叠合悬臂梁端部受集中力作用的理论解[J].合肥工业大学学报(自然科学版),2010,33(3):391-395.(LIU Yihua,ZHU Lijun.Analytical solution for bi-material superposed cantilever beam subjected to concentrated force[J].Journal of Hefei university of technology(natural science edition),2010,33(3):391-395(in Chinese)). [10] 詹春晓,刘一华.含固支端梁的解析解[J].应用力学学报,2016,33(2):201-207.(ZHAN Chunxiao,LIU Yihua.Analytical solutions for beams with fixed ends[J].Chinese journal of applied mechanics,2016,33(2):201-207(in Chinese)). [11] 王美芹,刘一华.具有梯度界面层的双材料悬臂梁解析解[J].应用力学学报,2010,27(2):232-238.(WANG Meiqin,LIU Yihua.Analytical solution for bi-material cantilever beam with graded interface layer[J].Chinese journal of applied mechanics,2010,27(2):232-238(in Chinese)). [12] HEYLIGER P R.When beam theories fail[J].Journal of mechanics of materials and structures,2013,8(1):15-35. [13] NIE G J,ZHONG Z,CHEN S.Analytical solution for a functionally graded beam with arbitrary graded material properties[J].Composites:part B,2013,44(1):274-282. [14] 陈祺,周叮,刘朵.集簇式弹性连接组合梁桥的力学性能分析[J].应用力学学报,2018,35(1):211-217.(CHEN Qi,ZHOU Ding,LIU Duo.Mechanical properties analysis of composite beam bridge with cluster elastic connectors[J].Chinese journal of applied mechanics,2018,35(1):211-217(in Chinese)). [15] 苗丹,刘一华.双材料叠合简支梁受均布载荷作用时的解析解[J].应用力学学报,2016,33(4):589-595.(MIAO Dan,LIU Yihua.Analytical solutions for bi-material superposed simply supported beam subject to uniform load[J].Chinese journal of applied mechanics,2016,33(4):589-595(in Chinese)). [16] 谢丽君.简支双层叠合梁的变形计算[J].机械强度,2012,34(5):777-780.(XIE Lijun.Deformation computation of simplified supported double composite beam[J].Journal of mechanical strength,2012,34(5):777-780(in Chinese)).

备注/Memo

备注/Memo:
-
更新日期/Last Update:
新金沙指定投注正网-金沙指定开户平台-澳门金沙官方网址多少