我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

非线性度对修正双步长显式法及常用逐步积分法的影响

《应用力学学报》[ISSN:1000-4939/CN:61-1112/O3]

期数:
2019年02期
页码:
411-416
栏目:
出版日期:
2018-12-18

文章信息/Info

Title:
Effects of nonlinearity on a corrected explicit method of double time steps and common step-by-step integration methods
作者:
杨超1张志新2李强1
1 北京交通大学 机械与电子控制工程学院 100044 北京;2 中车戚墅堰机车车辆工艺研究所有限公司 213011 常州
Author(s):
Yang Chao1 Zhang Zhixin2 Li Qiang1
1 School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, 100044, Beijing, China; 2 CRRC Qishuyan Institute Co., Ltd., 213011, Changzhou, China
关键词:
非线性逐步积分法时间步长精度稳定性
分类号:
O322
DOI:
10.11776/cjam.36.02.C059
文献标识码:
A
摘要:
为了掌握非线性度对逐步积分法的影响,研究了几种积分算法在不同非线性度振动系统中的响应。通过3个典型非线性算例,对修正双步长显式法、蛙跳式中心差分法、Newmark法、广义?法和精细积分法的计算精度和稳定性能等进行了比较。结果表明:非线性度对广义?法、精细积分法和Newmark法的稳定性有影响;高非线性度对Newmark法的计算稳定性影响最大;时间步长越小,算法精度和计算量越高;相同小步长情况下,精细积分法的精度最高,而修正双步长显式法的计算量最小;在时间步长较大时,低非线性度会引起精细积分法不稳定,修正双步长显式法的精度最高,修正双步长显式法在非线性系统中具有很强的鲁棒性。

参考文献/References

[1] ZHAI W M,WANG K Y,CAI C B.Fundamentals of vehicle-track coupled dynamics[J].Vehicle system dynamics,2009,47(11):1349-1376. [2] ZHAI W M.Two simple fast integration methods for large-scale dynamic problems in engineering[J].International journal for numerical methods in engineering,1996,39:4199-4214. [3] ZHAI W M,GAO J,LIU P,et al.Reducing rail side wear on heavy-haul railway curves based on wheel-rail dynamic interaction[J].Vehicle system dynamics,2014,52(S):440-454. [4] HILBER H M,HUGHES T J R,TAYLOR R L.Improved numerical dissipation for time integration algorithms in structural dynamics[J].Earthquake engineering and structural dynamics,1977,5(3):283-292. [5] CHUNG J,HULBERT G M.A time integration algorithm for structural dynamics with improved numerical dissipation:the generalized-? method[J].Journal of applied mechanics,1993,60(2):371-375. [6] WEN W,JIAN K,LUO S.An explicit time integration method for structural dynamics using septuple B-spline functions[J].International journal for numerical methods in engineering,2014,97(9):629-657. [7] XIE Y M.An assessment of time integration schemes for non-linear dynamic equations[J].Journal of sound and vibration,1996,192(1):321-331. [8] ZHONG W X,WILLIAMS F W.A precise time step integration method[J].Journal of mechanical engineering science,1994,208(63):427-430. [9] 钟万勰.结构动力方程的精细时程积分[J].大连理工大学学报,1994,34(2):131-135.(ZHONG Wanxie.On precise time integration method for structural dynamics[J].Journal of Dalian university of technology,1994,34(2):131-135(in Chinese)). [10] 吕和祥,蔡志勤,裘春航.非线性动力学问题的一个显式精细积分算法[J].应用力学学报,2001,18(2):34-40.(LÜ Hexiang,CAI Zhiqin,QIU Chunhang.An explicit precise integration algorithm for nonlinear dynamics problems[J].Chinese journal of applied mechanics,2001,18(2):34-40(in Chinese)). [11] 吕和祥,于洪洁,裘春航.精细积分的非线性动力学积分方程及其解法[J].固体力学学报,2001,22(3):303-308.(LÜ Hexiang,YU Hongjie,QIU Chunhang.An integral equation of nonlinear dynamics and its solution method[J].Acta mechanica solida sinica,2001,22(3):303-308(in Chinese)). [12] 陈豪龙,周焕林,余波.瞬态热传导问题的精细积分-双重互易边界元法[J].应用力学学报,2017,34(5):835-841.(CHEN Haolong,ZHOU Huanlin,YU Bo.Precise integration DRBEN for solving transient heat conduction problems[J].Chinese journal of applied mechanics,2017,34(5):835-841(in Chinese)). [13] 杨超,肖守讷,鲁连涛.基于双步长的显式积分算法[J].振动与冲击,2015,34(1):29-32.(YANG Chao,XIAO Shoune,LU Liantao.Explicit integration algorithm based on double time steps[J].Journal of vibration and shock,2015,34(1):29-32(in Chinese)). [14] 杨超,朱涛,杨冰,等.结构动力学中的广义多步显式积分算法[J].西南交通大学学报,2017,52(1):133-140.(YANG Chao,ZHU Tao,YANG Bing,et al.Generalized multi-step explicit integration method in structural dynamics[J].Journal of southwest Jiaotong university,2017,52(1):133-140(in Chinese)). [15] CHANG S Y.An explicit method with improved stability property[J].International journal for numerical methods in engineering,2009,77(8):1100-1120. [16] CHANG S Y.A family of noniterative integration methods with desired numerical dissipation[J].International journal for numerical methods in engineering,2014,100(1):62-86. [17] 张雄,王天舒.计算动力学[M].北京:清华大学出版社,2007.(ZHANG Xiong,WANG Tianshu.Computational dynamics[M].Beijing:Tsinghua University Press,2007(in Chinese)). [18] 杨超.列车碰撞动力学关键问题研究[D].成都:西南交通大学,2016.(YANG Chao.Research on key issues of train collision dynamics[D].Chengdu:Southwest Jiaotong University,2016(in Chinese)). [19] CHANG S Y.A new family of explicit methods for linear structural dynamics[J].Computers & structures,2010,88(11/12):755-772.

备注/Memo

备注/Memo:
-
更新日期/Last Update:
新金沙指定投注正网-金沙指定开户平台-澳门金沙官方网址多少