我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

三种不同对流结构的行波斑图

《应用力学学报》[ISSN:1000-4939/CN:61-1112/O3]

期数:
2019年02期
页码:
394-399
栏目:
出版日期:
2018-12-18

文章信息/Info

Title:
Three types of traveling wave patterns with different convection structures
作者:
宁利中1刘爽1宁碧波2袁喆1田伟利3渠亚伟1
1 西安理工大学 710048 西安;2 嘉兴学院 314001 嘉兴; 3 上海大学 200444 上海
Author(s):
Ning Lizhong1 Liu Shuang1 Ning Bibo2 Yuan Zhe1 Tian Weili3 Qu Yawei1
1 Xi’an University of Technology, 710048, Xi’an, China; 2 Jiaxing University, 314001, Jiaxing, China; 3 Shanghai University, 200444, Shanghai, China
关键词:
行波缺陷分离比
分类号:
O357
DOI:
10.11776/cjam.36.02.A061
文献标识码:
A
摘要:
利用二维数值分析,探讨了长高比 、分离比 的三种行波对流斑图。结果表明:在 (1.67,2.0]范围内出现了具有两个间歇性缺陷的行波斑图,第一缺陷和第二缺陷发生的位置固定;第一缺陷的出现周期随着相对瑞利数r的增加而增加。当相对瑞利数r较小时,第二缺陷的出现周期不确定;当相对瑞利数 较大时,第二缺陷的出现周期随着相对瑞利数r的增加而增加。在 (2.0,2.59]范围内出现了具有一个间歇性缺陷的行波斑图,缺陷发生的位置不固定;缺陷的出现周期随着相对瑞利数r的增加而增加。在 (2.59,4.6]范围内出现无缺陷的行波斑图,这说明随着相对瑞利数r的增加,行波对流结构变得简单化;同时发现不同的行波对流结构有不同的对流振幅变化过程。

参考文献/References

[1] CROSS M C,HOHENBERG P C.Pattern formation outside of equilibrium[J].Reviews of modern physics,1993,65(3):851-1112. [2] WALDEN R W,KOLODNER P,PASSNER A,et al.Traveling waves and chaos in convection in binary fluid mixture[J].Physical review letters,1985,55(55):496-499. [3] MA Y P,BURKE J,KNOBLOCH E.Defect-mediated snaking:a new growth mechanism for localized structures[J].Physica D,2010,239(19):1867-1883. [4] TAKESHI W,MAKOTO I,YASUMASA N.Spontaneous formation of travelling localized structures and their asymptotic behaviours in binary fluid convection[J].Journal of fluid mechanics,2012,712(35):219-243. [5] RIECKE H.Self-trapping of traveling-wave pulses in binary mixture convection[J].Physical review letters,1992,68(3):301-304. [6] YAHATA H.Dynamics of convection in binary fluid mixtures[J].Progress of theoretical physics supplement,1989,99:493-501. [7] BARTEN W,LUCKE M,KAMPS M.Localized traveling-wave convection in binary fluid mixtures[J].Physical review letters,1991,66(20):2621-2624. [8] NING Lizhong,HARADA Y,YAHATA H.Localized traveling waves in binary fluid convection[J].Progress of theoretical physics,1996,96(4):669-682. [9] NING Lizhong,HARADA Y,YAHATA H.Modulated traveling waves in binary fluid convection in an intermediate-aspect-ratio rectangular cell[J].Progress of theoretical physics,1997,97(97):831-848. [10] NING Lizhong,HARADA Y,YAHATA H.Formation process of the traveling wave state with a defect in binary fluid convection[J].Progress of theoretical physics,1997,98(3):551-566. [11] NING Lizhong,HARADA Y,YAHATA H,et al.Fully developed traveling-wave convection in binary fluid mixtures with lateral flows[J].Progress of theoretical physics,2001,106(3):503-512. [12] 宁利中,王娜,袁喆,等.分离比对混合流体Rayleigh-Bénard对流解的影响[J].物理学报,2014,63(10):104401.(NING Lizhong,WANG Na,YUAN Zhe,et al.Influence of separation ratio on Rayleigh-Bénard convection solutions in a binary fluid mixture[J].Acta physica sinica,2014,63(10):104401(in Chinese)). [13] 宁利中,王永起,袁喆,等.两种不同结构的混合流体局部行波对流斑图[J].科学通报,2015,61(8):872-880.(NING Lizhong,WANG Yongqi,YUAN Zhe,et al.Two types of patterns of localized traveling wave convection in binary fluid mixtures with different structures[J].Chinese science bulletin,2016,61(8):872-880(in Chinese)). [14] 宁利中,胡彪,宁碧波,等.Poiseuille-Rayleigh-Benard流动中对流斑图的分区和成长[J].物理学报,2016,65(21):214401.(NING Lizhong,HU Biao,NING Bibo,et al.Partition and growth of convection patterns in Poiseuille-Rayleigh-Benard flow[J].Acta physica sinica,2016,65(21):214401(in Chinese)). [15] 宁利中,刘爽,宁碧波,等.混合流体分离比对摆动行的影响[J].应用力学学报,2017,34(6):1086-1091.(NING Lizhong,LIU Shuang,NING Bibo,et al.Effect of separation ratio in a binary fluid mixture on undulation traveling wave[J].Chinese journal of applied mechanics,2017,34(6):1086-1091(in Chinese)). [16] 付超,王赫宇,杨伟,等.底部热加载下两层多孔介质热流耦合现象研究[J].应用力学学报,2017,34(3):489-494.(FU Chao,WANG Heyu,YANG Wei,et al.Study on heat-flow coupling in two-layer porous media with thermal load from bottom[J].Chinese journal of applied mechanics,2017,34(3):489-494(in Chinese)). [17] 胡军,尹协远.双流体Poiseuille Rayleigh Bénard流动中脉冲扰动的时空演化[J].中国科学技术大学学报,2007,37(10):1267-1272.(HU Jun,YIN Xieyuan.Spatio temporal evolution of pulse like perturbation for Poiseuille Rayleigh Bénard flows in binary fluids[J].Journal of university of science and technology of China,2007,37(10):1267-1272(in Chinese)). [18] HU Jun,YIN Xieyuan.Two-dimensional simulation of Poiseuille- Rayleigh-Benard flows in binary fluids with Soret effect[J].Progress in nature science,2007,17(12):1389-1396. [19] ZHAO Bingxin,TIAN Zhenfu.Numerical investigation of binary fluid convection with a weak negative separation ratio in finite containers[J].Physics of fluids,2015,27(7):851. [20] TARAUT A V,SMORODIN B L,LUCKE M.Collisions of localized convection structures in binary fluid mixtures[J].New journal of physics,2012,14(9):093055. [21] MERCADER I,BATISTE O,ALONSO A,et al.Traveling convectons in binary fluid convection[J].Journal of fluid mechanics,2013,722(5):240-265. [22] KNOBLOCH E,MERCADER I,BATISTE O,et al.Convectons in periodic and bounded domains[J].Fluid dynamics research,2010, 42(2):025505. [23] MERCADER I,BATISTE O,ALONSO A,et al.Convectons,anticonvectons and multiconvectons in binary fluid convection[J].Journal of fluid mechanics,2011,667(1):586-606. [24] BATISTE O,KNOBLOCH E,ALONSO A,et al.Spatially localized binary fluid convection[J].Journal of fluid mechanics,2006,560(560):149-158. [25] COULLET P,ELPHICK C,GIL L,et al. Topological defects of wave patterns[J].Physical review letters,1987,59(24):884-887. [26] KOLODNER P,BENSIMON D,SURKO C M. Traveling-wave convection in an annulus[J].Physical review letters,1988,60(17):1723-1726. [27] BENSIMON D,KOLODNER P,SURKO C M,et al.Competing and coexisting dynamical states of traveling-wave convection in an annulus[J].Journal of fluid mechanics,1990,217(217):441-467. [28] KOLODNER P.Extended states of nonlinear traveling-wave convection.II.fronts and spatiotemporal defects[J].Physical review A,1992,46(10):6452-6468. [29] DEANE A,KNOBLOCH E,TOOMRE J.Traveling waves in large-aspect-ratio thermosolutal convection[J].Physical review A,1988,37(5):1817-1820. [30] GRANZOW G D,RIECKE H.Phase diffusion in localized spatiotemporal amplitude chaos[J].Physical review letters,1996,77(12):2451-2454. [31] KAPLAN K,STEINBEG V.Phase slippage,nonadiabatic effect,and dynamics of a source of traveling waves[J].Physical review letters,1993,71(20):3291-3294. [32] NING Lizhong,QI Xin,YUAN Zhe,et al.A counter propagating wave state with a periodically horizontal motion of defects[J].Journal of hydrodynamics,2008,20(5):567-573. [33] 宁利中,齐昕,王思怡.具有大负分离比的混合流体局部行进波对流[J].力学季刊,2010,31(2):194-200.(NING Lizhong,QI Xin,WANG Siyi.Localized travelling wave convection in binary fluid mixtures with a largely negative separation ratio[J].Chinese quarterly mechanics,2010,31(2):194-200(in Chinese)). [34] PATANKAR S V.Computation of heat transfer and fluid flow[M].Minneapolis:University of Minnesota,1982.

备注/Memo

备注/Memo:
-
更新日期/Last Update:
新金沙指定投注正网-金沙指定开户平台-澳门金沙官方网址多少