我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

含水平非线性弹簧的准零刚度隔振系统的力传递率研究

《应用力学学报》[ISSN:1000-4939/CN:61-1112/O3]

期数:
2019年02期
页码:
356-363
栏目:
出版日期:
2018-12-18

文章信息/Info

Title:
The force transmissibility of a quasi-zero stiffness isolation system with horizontal nonlinear springs
作者:
宋春芳1徐龙龙1刘彦琦2
1 江南大学 机械工程学院 江苏省食品先进制造装备技术重点实验室 214122 无锡; 2 北京市劳动保护科学研究所 环境噪声与振动北京市重点实验室 100054 北京
Author(s):
Song Chunfang1 Xu Longlong1 Liu Yanqi2
1Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanic Engineering, Jiangnan University,214122,Wuxi,China; 2 Key Laboratory of Environment Noise and Vibration, Beijing Municipal Institute of Labor Protection, 100054, Beijing, China
关键词:
非线性刚度水平阻尼准零刚度低频隔振力传递率
分类号:
O328
DOI:
10.11776/cjam.36.02.C009
文献标识码:
A
摘要:
提出了一种含凸轮-滚轮-非线性弹簧机构作为负刚度结构的准零刚度隔振器,负刚度结构中对称设计了两个水平阻尼器。通过静力学分析,确定了系统的零刚度条件;建立了系统的动力学方程,利用谐波平衡法进行了幅频响应分析,数值分析了水平弹簧的非线性、激励幅值、竖直阻尼比和水平阻尼比对力传递率特性的影响规律,并与等效的线性系统进行了比较。结果表明:系统引入刚度渐减型弹簧比引入刚度渐增型弹簧所获得的低频隔振性能更好;增大竖直阻尼比和水平阻尼比都可进一步降低传递率峰值,但竖直阻尼比越大,整个高频区的力传递率越大,而较大的水平阻尼比只增大较窄频域内的力传递率,且对高频区的隔振性能无影响。此外,准零刚度系统的隔振性能还与激励幅值有关。与线性系统相比,该准零刚度系统具有较低的起始隔振频率,有效隔振频带宽更宽;在线性系统共振频率附近区域内,准零刚度系统隔振效果比线性系统更加优越;在高频区,两系统的隔振效果趋于一致。

参考文献/References

[1] 张建卓,李旦,董申,等.精密仪器用超低频非线性并联隔振系统研究[J].中国机械工程,2004,15(1):69-71.(ZHANG Jianzhuo,LI Dan,DONG Shen,et al.Study on ultra-low frequency parallel connection isolator used for precision instruments[J].China mechanical engineering,2004,15(1):69-71(in Chinese)). [2] 王丹,张亚红,白长青,等.新型橡胶隔振器参数辨识及动力学特性研究[J].应用力学学报,2017,34(3):410-416.(WANG Dan,ZHANG Yahong,BAI Changqing,et al.Study on parameter identification and dynamic performance of a novel rubber isolator[J].Chinese journal of applied mechanics,2017,34(3):410-416(in Chinese)). [3] CHENG C,LI S M,WANG Y,et al.On the analysis of a high-static-low-dynamic stiffness vibration isolator with time-delayed cubic displacement feedback[J].Journal of sound and vibration,2016,378:76-91. [4] XU D,YU Q,ZHOU J,et al.Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic[J].Journal of sound and vibration,2013,332(14):3377-3389. [5] CARRELLA A,BRENNAN M J,WATERS T P.Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic[J].Journal of sound and vibration,2007,301(3/5):678-689. [6] CARRELLA A,BRENNAN M J,WATERS T P,et al.Force and displacement transmissibility of a nonlinear isolator with high- static-low-dynamic-stiffness[J].International journal of mechanical sciences,2012,55(1):22-29. [7] SUN X,JING X.A nonlinear vibration isolator achieving high-static-low-dynamic stiffness and tunable anti-resonance frequency band[J].Mechanical systems and signal processing,2016,80:166-188. [8] CARRELLA A,BRENNAN M J,KOVACIC I,et al.On the force transmissibility of a vibration isolator with quasi-zero-stiffness[J].Journal of sound and vibration,2009,322(4):707-717. [9] KOVACIC I,BRENNAN M J,WATERS T P.A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic[J].Journal of sound and vibration,2008,315(3):700-711. [10] 杨庆超,柴凯,楼京俊,等.柔性基础准零刚度隔振系统动力学特性分析[J].应用力学学报,2018,35(1):70-75.(YANG Qingchao,CHAI Kai,LOU Jingjun,et al.Dynamic characteristic analysis of quasi-zero stiffness vibration isolation system with flexible foundation[J].Chinese journal of applied mechanics,2018,35(1):70-75(in Chinese)). [11] SUN X,XU J,JING X,et al.Beneficial performance of a quasi-zero-stiffness vibration isolator with time-delayed active control[J].International journal of mechanical sciences,2014,82(1):32-40. [12] WANG Y,XUD L,ZHOU J X.Characteristic analysis of a ball-type vibration isolator with quasi-zero-stiffness[J].Journal of vibration and shock,2015,34(4):142-147. [13] 周加喜,王心龙,徐道临,等.含凸轮-滚轮机构的准零刚度系统隔振特性实验研究[J].振动工程学报,2015,28(3):449-455.(ZHOU Jiaxi,WANG Xinlong,XU Daolin,et al.Experimental study on vibration isolation characteristics of the quasi-zero stiffness isolator with cam-roller mechanism[J].Journal of vibration engineering,2015,28(3):449-455(in Chinese)). [14] ZHOU J,WANG X,XU D,et al.Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms[J].Journal of sound and vibration,2015,346(1):53-69. [15] CHENG C,LI S,WANG Y,et al.Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping[J].Nonlinear dynamics,2016,87(4):1-13. [16] MENG Q,YANG X,LI W,et al.Research and analysis of quasi-zero-stiffness isolator with geometric nonlinear damping[J].Shock and vibration,2017,2017(9):1-9. [17] 金良安,艾葳,迟卫.多界面衰波隔振技术研究[J].应用力学学报,2016,33(1):7-12.(JIN Liang’an,AI Wei,CHI Wei.Research on vibration isolation technology of multi-interfacial wave attenuation[J].Chinese journal of applied mechanics,2016,33(1):7-12(in Chinese)). [18] 张军,谌勇,华宏星,等.卫星减振的试验研究[J].应用力学学报,2006,23(1):76-79.(ZHANG Jun,SHEN Yong,HUA Hongxing,et al.Experimental research on whole-spacecraft vibration suppression[J].Chinese journal of applied mechanics,2006,23(1):76-79(in Chinese)). [19] LIU X,HUANG X,HUA H.On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector[J].Journal of sound and vibration,2013,332(14):3359-3376. [20] PENG Z K,MEN G G,LANG Z Q,et al.Study of the effect of cubic nonlinear damping on vibration isolation using harmonic balance method[J].International journal of non-linear mechanics,2012,47(10):1073-1080. [21] CREDE C E,RUZICKA J E.Theory of vibration isolation[J].Shock and vibration handbook,1996.

备注/Memo

备注/Memo:
-
更新日期/Last Update:
新金沙指定投注正网-金沙指定开户平台-澳门金沙官方网址多少