我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

海底防沉板-桩复合基础竖向受力变形特性研究

《应用力学学报》[ISSN:1000-4939/CN:61-1112/O3]

期数:
2019年02期
页码:
326-333
栏目:
出版日期:
2018-12-18

文章信息/Info

Title:
The vertical force and deformation characteristics of subsea mudmat-pile hybrid foundations
作者:
孔德森12刘一12谭晓燕3张杰12
1 山东科技大学 土木工程与建筑学院 266590 青岛;2 山东科技大学 山东省土木工程防灾减灾重点实验室 266590 青岛; 3 山东星科智能科技股份有限公司 250101 济南
Author(s):
Kong Desen12 Liu Yi12 Tan Xiaoyan3 Zhang Jie12
1 College of Civil Engineering and Architecture, Shandong University of Science and Technology, 266590, Qingdao, China; 2 Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Shandong University of Science and Technology, 266590, Qingdao, China; 3 Shandong Xingke Intelligent Technology Co., Ltd, 250101, Jinan, China
关键词:
防沉板桩基础受力特性变形特性竖向荷载
分类号:
TU470+.3
DOI:
10.11776/cjam.36.02.B090
文献标识码:
A
摘要:
为了研究海底防沉板-桩复合基础在竖向荷载作用下的受力变形特性,以我国南海某200m水深项目为研究对象,将防沉板-桩复合基础简化为防沉板加角桩的形式,利用FLAC3D数值模拟软件建立了防沉板-桩复合基础数值计算模型。研究了海底防沉板-桩复合基础在竖向荷载作用下海床土体、防沉板、桩身的受力变形特性,并对不同竖向荷载作用下海床土体沉降、防沉板弯矩、桩身位移、桩身弯矩进行了对比分析。研究表明:防沉板的正负弯矩最大值分别出现在防沉板中部和防沉板与桩顶端的连接处,荷载越大,对防沉板的影响越大,桩在防沉板-桩复合基础中的作用越大;荷载越大,桩身产生的水平位移越大,其倾斜程度也越大;竖向荷载较小时,桩身同时出现正负弯矩,竖向荷载较大时,桩身只有正弯矩或只有负弯矩;复合基础的破坏容易发生在防沉板与桩身顶端的连接处。研究内容和计算结果可为防沉板-桩复合基础的设计提供合理可靠的理论依据。

参考文献/References

[1] 李晶,杨立,马越,等.海洋能源标准化现状与分析[J].海洋开发与管理,2015(6):6-9.(LI Jing,YANG Li,MA Yue,et al.Current situation and analysis of ocean energy resources standardization[J]. Ocean development and management,2015(6):6-9(in Chinese)). [2] 史丹,刘佳骏.我国海洋能源开发现状与政策建议[J].中国能源,2013,35(9):6-11.(SHI Dan,LIU Jiajun.Status of ocean energy technological development and policy suggestions in China[J].Energy of China,2013,35(9):6-11(in Chinese)). [3] 刘润,陈广思.砂土中带裙板防沉板基础竖向承载力的上限解[J].海洋工程,2015,33(4):45-52.(LIU Run,CHEN Guangsi.Upper bound solutions of vertical bearing capacity of skirted mudmat in sand[J].The ocean engineering,2015,33(4):45-52(in Chinese)). [4] 王志军,崔雷.水下管汇基础设计[J].广东化工,2013,40(10):159-161.(WANG Zhijun,CUI Lei.Base of subsea manifold[J]. Guangdong chemical industry,2013,40(10):159-161(in Chinese)). [5] 谭越,石云,刘明.管道终端及防沉板基础分析[J].海洋石油,2011,31(3):93-96.(TAN Yue,SHI Yun,LIU Ming.Structure analysis of PLET and mudmat[J].Offshore oil,2011,31(3):93-96(in Chinese)). [6] 徐蒙.深海水下生产系统防沉板基础形式改进研究[D].天津:天津大学,2015.(XU Meng.Study of structural improvement of mudmat in deep sea subsea system[D].Tianjin:Tianjin University,2015(in Chinese)). [7] 徐蒙,杨树耕,王晗,等.水下生产系统防沉板结构形式改进研究[J].海洋通报,2016,35(4):436-442.(XU Meng,YANG Shugeng,WANG Han,et al.Study of structural improvement of mudmat in the subsea system[J].Marine science bulletin,2016,35(4):436-442(in Chinese)). [8] 刘润,刘孟孟,马文冠.新型防沉板基础的地基承载力研究[J].岩土力学,2016,37(11):3065-3071.(LIU Run,LIU Mengmeng,MA Wenguan.Bearing capacity of a new type of mudmat foundation[J].Rock and soil mechanics,2016,37(11):3065-3071(in Chinese)). [9] 向正新,钱利勤,夏成宇,等.深水钻井隔水管与井口耦合作用力学仿真分析[J].应用力学学报,2017,34(5):981-987.(XIANG Zhengxin,QIAN Liqin,XIA Chengyu,et al.Mechanical simulation analysis of coupling action of riser and wellhead in deepwater drilling[J].Chinese journal of applied mechanics,2017,34(5):981-987(in Chinese)). [10] FINNIE I M S,MORGAN N.Torsional loading of subsea structure[C]//Proceedings of the Fourth International Offshore and Polar Engineering Conference.Toulon,France:ISOPE,2004:326-333. [11] TAPPER L,BYENE B W,MARTIN C M.Combined load capacity of grillage foundations on loose sand[C]//Proceedings of the 8th International Conference on Physical Modeling in Geotechnics.London,Britain:ICPMG,2014:168-180. [12] 王宴滨,高德利,房军.深水钢悬链线立管疲劳寿命计算方法[J].应用力学学报,2016,33(2):352-357.(WANG Yanbin,GAO Deli,FANG Jun.A calculation method for fatigue life of deepwater steel catenary riser[J].Chinese journal of applied mechanics,2016,33(2):352-357(in Chinese)). [13] 刘润,刘孟孟.饱和黏土中复合条形防沉板基础承载特性研究[J].水利学报,2015,46(增刊1):74-78.(LIU Run,LIU Mengmeng. Bearing capacity of composite-strip mudmat foundations for subsea production system on undrained clays[J].Journal of hydraulic engineering,2015,46(S1):74-78(in Chinese)). [14] 刘润,刘孟孟,杨树耕.饱和软黏土中不同形状深水防沉板基础承载特性研究[J].海洋学报,2016,38(3):131-144.(LIU Run,LIU Mengmeng,YANG Shugeng.Bearing capacity of different shape mudmat foundations for subsea production system on undrained clays[J].Acta oceanologica sinica,2016,38(3):131-144(in Chinese)). [15] 杨进良,陈环.土力学[M].北京:中国水利水电出版社,2009:237-241.(YANG Jinliang,CHEN Huan.Soil mechanics[M].Beijing:China Water Conservancy and Hydropower Press,2009:237-241(in Chinese)). [16] 郭绍曾,刘润,洪兆徽,等.插桩过程对临近平台桩基础的影响研究[J].地震工程学报,2015,37(2):446-452,459.(GUO Shaoceng,LIU Run,HONG Zhaohui,et al.Influence of spud can penetration on pile foundations near a platform[J].Journal of earthquake engineering,2015,37(2):446-452,459(in Chinese)). [17] 魏文礼,李盼盼,洪云飞,等.有限尾水深波浪底板壁面射流水力特性的数值模拟研究[J].应用力学学报,2016,33(2):234-240.(WEI Wenli,LI Panpan,HONG Yunfei,et al.Numerical simulation study on hydraulic characteristics of wall jets on corrugated beds with limited tailwater[J].Chinese journal of applied mechanics,2016,33(2):234-240(in Chinese)). [18] 刘育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2008:172-173.(LIU Yumin,XU Dingping. FLAC/FLAC3D foundation and engineering examples[M].Beijing:China Water Conservancy and Hydropower Press,2008:172-173(in Chinese)). [19] 刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005:67-68.(LIU Bo,HAN Yanhui.FLAC principles,examples and application guides[M].Beijing:China Communications Press,2005:67-68(in Chinese)).

备注/Memo

备注/Memo:
-
更新日期/Last Update:
新金沙指定投注正网-金沙指定开户平台-澳门金沙官方网址多少