我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

含裂纹简支梁在均布荷载作用下的内聚区模型解析函数

《应用力学学报》[ISSN:1000-4939/CN:61-1112/O3]

期数:
2019年02期
页码:
310-315
栏目:
出版日期:
2018-12-18

文章信息/Info

Title:
Cohesive zone model analytic function to simply supported beam with an edge-crack under uniform distributed load
作者:
段树金12解沅衡1侯永康1安蕊梅12
1 石家庄铁道大学 土木工程学院 050043 石家庄;2 石家庄铁道大学 道路与铁道工程安全保障省部共建教育部重点实验室 050043 石家庄
Author(s):
Duan Shujin12 Xie Yuanheng1 Hou Yongkang1 An Ruimei1
1 School of Civil Engineering, Shijiazhuang Tiedao University,050043, Shijiazhuang, China; 2 Key Laboratory of Roads and Railway Engineering Safety Control Ministry of Education, Shijiazhuang Tiedao University, 050043,Shijiazhuang, China
关键词:
含切口简支梁边界配置法内聚区模型解析解
分类号:
TU375.1
DOI:
10.11776/cjam.36.02.B018
文献标识码:
A
摘要:
对于含切口简支梁受均布荷载作用的问题,基于Williams应力函数,通过边界配置法并借用无裂纹体应力边界条件,求得了含高阶项的全场解析解及相应的应力强度因子KI。基于“Duan and Nakagawa’s”模型,通过对首项(奇异项)进行加权积分,消除了裂缝尖端应力呈无穷大的奇异性,得到了内聚区模型的全场解析解。通过对不同解法下典型截面正应力分布的比较,表明内聚区模型解消除了裂缝尖端应力的奇异性,比函数叠加法的结果精度更高,这样的数学力学模型可以从宏观上反映混凝土类材料的断裂特性。

参考文献/References

[1] WILLIAMS M L.Bending stress distribution at the base of stationary crack[J].Journal of applied mechanics,1961,28(1):78-82. [2] 胡若邻,黄培炎,郑顺潮.混凝土断裂过程区尺寸的理论推导[J].工程力学,2010,27(6):127-132.(HU Ruolin,HUANG Peiyan,ZHENG Shunchao.Theoretical derivation of the size of fracture process zone of concrete[J].Engineering mechanics,2010,27(6):127-132(in Chinese)). [3] 王元汉,伍佑伦,余飞.板弯曲断裂计算的边界配置解法[J].应用数学和力学,2003,24(6):605-610.(WANG Yuanhan,WU Youlun,YU Fei.Fracture calculation of bending plates by boundary collocation method[J].Applied mathematics and mechanics,2003,24(6):605-610(in Chinese)). [4] 高配琴.关于Wlliiams应力函数边界配置法解的收敛性及有效性探讨[J].西北工业大学学报,1985,3(2):251-260.(GAO Peiqin.An exploration of the convergence and validity of the results of boundary collocation procedures using Williams stress function[J].Journal of northwestern polytechnical university,1985,3(2):251-260(in Chinese)). [5] 熊先仁,袁去惑,杨菊梅,等.应力强度因子的边界配置法程序及工程应用[J].江西科学,1996,14(2):106-113.(XIONG Xianren,YUAN Quhuo,YANG Jumei,et al.The procedure of the mode of boundary collocation of stress intensity factor and its application[J].Jiangxi science,1996,14(2):106-113(in Chinese)). [6] BARENBLATT G I.The formation of equilibrium cracks during brittle fracture,general ideas and hypotheses,axially-symmetric cracks[J].Journal of applied mathematics & mechanics,1959,23(3):622-636. [7] HILLERBORG A.Analysis of fracture by means of the fictitious crack model,particularly for fiber reinforced concrete[J].International journal of cement composites,1980,2(4):177-184. [8] PETERSSON P E.Fracture energy of concrete:method and determination[J].Cement and concrete research,1980,10(1):78-89. [9] 王青原,陈红鸟,张华刚,等.三点弯曲下混凝土梁挠度与裂缝口张开位移关系[J].应用力学学报,2017,34(5):937-944.(WANG Qingyuan,CHEN Hongniao,ZHANG Huagang,et al.Relationship of deflection and crack mouth opening displacement of concrete beams under the three-point bending[J].Chinese journal of applied mechanics,2017,34(5):937-944(in Chinese)). [10] 张鹏,胡小飞,姚伟岸.内聚力模型裂纹问题分析的解析奇异单元[J].固体力学学报,2017,38(2):157-164.(ZHANG Peng,HU Xiaofei,YAO Weian.An analytical singular element to study the cohesive zone model for cracks[J].Chinese journal of solid mechanics,2017,38(2):157-164(in Chinese)). [11] 段树金,张彦龙,安蕊梅.基于裂纹尖端二阶弹性解的断裂过程区尺度[J].应用数学和力学,2013,34(6):598-605.(DUAN Shujin,ZHANG Yanlong,AN Ruimei.Fracture process zone size based on secondary elastic crack tip stress solution[J].Applied mathematics and mechanics,2013,34(6):598-605(in Chinese)). [12] 王承强,郑长良.裂纹扩展过程中线性内聚力模型计算的半解析有限元法[J].计算力学学报,2006,23(2):146-151.(WANG Chengqiang,ZHENG Changliang.Semi-analytical finite element method for linear cohesive force model in crack propagation[J].Chinese journal of computational mechanics,2006,23(2):146-151(in Chinese)). [13] 卿龙邦,李庆斌,管俊峰.混凝土断裂过程区长度计算方法研究[J].工程力学,2012,29(4):197-201.(QING Longbang,LI Qingbin,GUAN Junfeng.Calculation method of the length of fracture process zone of concrete[J].Engineering mechanics,2012,29(4):197-201(in Chinese)). [14] 卿龙邦,姜军,周明杰,等.基于细观数值模拟的混凝土断裂过程区特性研究[J].混凝土,2016(4):9-12.(QING Longbang,JIANG Jun,ZHOU Mingjie,et al.Calculation the properties of fracture process zone on meso-scale in concrete[J].Concrete,2016(4):9-12(in Chinese)). [15] 王元汉.边裂纹物体反平面剪切时的边界配置法[J].华中理工大学学报,1992,20:117-120.(WANG Yuanhan.An edge cracked body in anti-planar shear calculated by the boundary collocation method[J].Journal of Huazhong university of science and technology ,1992,20:117-120(in Chinese)). [16] DUAN S J,NAKAGAWA K.Stress functions with finite stress concentration at the crack tips for central cracked panel[J].Engineering fracture mechanics,1988,29(5):517-526. [17] DUAN S J,NAKAGAWA K.A mathematical approach of fracture macromechanics for strain-softening material[J].Engineering fracture mechanics,1989,34(5/6):1175-1182. [18] 郭全民,段树金.混凝土简支梁在均布荷载作用下的断裂过程区及自振特性[J].石家庄铁道大学学报(自然学科版),2017,30(2):6-10.(GUO Quanmin,DUAN Shujin.Fracture process zone and natural vibration characteristics of concrete beam under uniform distributed forces[J].Journal of Shijiazhuang Tiedao university(natural science edition),2017,30(2):6-10(in Chinese)). [19] 解沅衡,段树金,侯永康,等.断裂过程区内聚力布对简支梁刚度和自振特性的影响研究[J].石家庄铁道大学学报(自然学科版),2018,31(2):1-6.(XIE Yuanheng,DUAN Shujin,HOU Yongkang,et al.A study on influence of the cohesion in fracture process zone to stiffness and natural vibration frequency of a simply supported beam[J].Journal of Shijiazhuang Tiedao university(natural science edition),2018,31(2):1-6(in Chinese)).

备注/Memo

备注/Memo:
-
更新日期/Last Update:
新金沙指定投注正网-金沙指定开户平台-澳门金沙官方网址多少