我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

微纳米尺度效应作用下充流微通道系统波动特性研究

《应用力学学报》[ISSN:1000-4939/CN:61-1112/O3]

期数:
2019年02期
页码:
289-295
栏目:
出版日期:
2018-12-18

文章信息/Info

Title:
Dynamic characteristics of microchannel fluid-solid coupling systems in nonlocal stress fields
作者:
王金瑞杨洋
昆明理工大学 650500 昆明
Author(s):
Wang Jinrui Yang Yang
Department of Engineering Mechanics, Kunming University of Science and Technology, 650500, Kunming, China
关键词:
流体非局部应力场理论非局部弹性理论应变梯度理论充流微通道波传导特性
分类号:
TH212;TH213.3
DOI:
10.11776/cjam.36.02.C057
文献标识码:
A
摘要:
结合非局部弹性应力/应变梯度耦合本构关系和流体非局部应力关系式,基于Euler梁理论,建立了充流微通道流固耦合波传导模型;根据耦合固体非局部应力/应变梯度弹性效应以及流体非局部效应,分别模拟了微通道和管腔内流体的尺度效应,推导得出了充流微通道在微纳米尺度的波动控制方程和边界条件。通过对控制方程的求解,分析了不同类型尺度效应对微通道的波动和振动特性的影响。结果显示,各类尺度效应对系统的动力学特性影响不同。微通道非局部弹性效应对波动产生阻尼,特别是对波长较短的波传导;而应变梯度弹性效应对波传导有促进作用,且该效应对波动的影响与波长无关;非局部效应和应变梯度效应对微通道刚度产生不同影响,非局部效应降低刚度,应变梯度效应增加刚度。

参考文献/References

[1] 林建忠.微纳流动理论和应用[M].北京:科学出版社,2010.(LIN Jianzhong.Micro-nano flow theory and its applications[M].Beijing:Science Press,2010(in Chinese)). [2] GAD-EL-HAK M.The fluid mechanics of microdevices-the freeman scholar lecture[J].Journal of fluids engineering-transactions of the ASME,1999,121(1):5-33. [3] GAD-EL-HAK M.Review:flow physics in MEMS[J].Mecanique and industries,2001,2(4):313-341. [4] KARNIADAKIS G E,BESKOK A.Microflow:fundamentals and simulation[M].New York:Springer-Verlag,2002. [5] 冯永平,罗华云.一种微构件拉伸测试系统及测试结构设计[J].应用力学学报,2017,34(5):963-968.(FENG Yongping,LUO Huayun.An apparatus for tensile test of micro-structure and design of test specimens by bulk silicon process[J].Chinese journal of applied mechanics,2017,34(5):963-968(in Chinese)). [6] KRISHNAN T V S,BABU J S,SATHIAN S P.A molecular dynamics study on the effect of thermostat selection on the physical behavior of water molecules inside single walled carbon nanotubes[J].Journal of molecular liquids,2013,188(188):42-48. [7] CUI J,YANG L,ZHOU L,et al.Nanoscale soldering of axially positioned single-walled carbon nanotubes:a molecular dynamics simulation study[J].ACS applied materials and interfaces,2014,6(3):2044-2050. [8] WANG Jifen,XIE Huaqing.Molecular dynamic investigation on the structures and thermal properties of carbon nanotube interfaces[J].Applied thermal engineering,2015,88:347-352. [9] 梁峰,包日东.微尺度输流管道考虑热效应的流固耦合振动分析[J].振动与冲击,2015,34(5):141-144.(LIANG Feng,BAO Ridong.Fluid-structure interaction of microtubes conveying fluid considering thermal effect[J].Journal of vibration and shock,2015,34(5):141-144(in Chinese)). [10] GUZ I A,RODGER A A,GUZ A N,et al.Developing the mechanical models for nanomaterials[J].Composites part A,2007,38(4):1234-1250. [11] AIFANTIA E C.Gradient deformation models at nanomicro and macro scales[J].Journal of engineering material technology,1999,121(2):189-202. [12] AIFANTIS E C.Strain gradient interpretation of size effects[J].International journal of fracture,1999,95(1):299-314. [13] CHEN B,GAO M,ZUO J M,et al.Binding energy of parallel carbon nanotubes[J].Applied physics letters,2003,83(17):3570-3571. [14] YANG Yang,ZHANG Lixiang,LIM C W.Wave propagation in fluid-filled single-walled carbon nanotube on analytically nonlocal Euler-Bernoulli beam model[J].Journal of sound and vibration,2012,331(7):1567-1579. [15] CHALLAMEL N.Variational formulation of gradient or/and nonlocal higher-order shear elasticity beams[J].Composite structures,2013,105(8):351-368. [16] SUI Y,TEO C J,LEE P S,et al.Fluid flow and heat transfer in wavy microchannels[J].International journal of heat and mass transfer,2010,53(13/14):2760-2772. [17] 余阳,杨洋.基于非局部应变梯度欧拉梁模型的充流单壁碳纳米管波动分析[J].振动与冲击,2017,36(8):1-8.(YU Yang,YANG Yang.Wave propagation of fluid-filled single-walled carbon nanotubes based on the nonlocal-strain gradient theory[J].Journal of vibration and shock,2017,36(8):1-8(in Chinese)). [18] RASHIDI V,MIRDAMADI H R,SHIRANI E.A novel model for vibrations of nanotubes conveying nano flow[J].Computational material science,2012,51(51):347-352. [19] MOHAMMED H A,GUNASEGARAM P,SHUAIB N H.Influence of channel shape on the thermal and hydraulic performance of microchannel heat sink[J].International communications in heat and mass transfer,2011,38(4):474-480. [20] MIRRAMEZANI M,MIRDAMADI H R.The effects of Knudsen-dependent flow velocity on vibrations of a nano-pipe conveying fluid[J].Archive of applied mechanics,2012,82(7):879-890. [21] MIRRAMEZANI M,MIRDAMADI H R.Effects of nonlocal elasticity and Knudsen number on fluid-structure interaction in carbon nanotube conveying fluid[J].Physical E,2012,44(10):2005-2015. [22] HASHEM Rafii-Tabar,GHAVANLOO E,FAZELZADEH S A. Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures[J].Physics reports,2016,638:1-97. [23] 李明,郑慧明,罗侠.基于能量法的载流单层碳纳米管振动特性研究[J].应用力学学报,2014,31(3):322-325.(LI Ming,ZHENG Huiming,LUO Xia.Study on vibration characteristics of single- walled carbon nanotubes based on energy method[J].Chinese journal of applied mechanics,2014,31(3):322-325(in Chinese)). [24] 李明,周攀峰,郑慧明.磁敏固支载流单壁碳纳米管在轴向磁场中的振动特性[J].应用力学学报,2017,34(4):634-640.(LI Ming,ZHOU Panfeng,ZHENG Huiming.Vibration characteristics of magnetically sensitive clamped-clamped carbon nanotubes conveying fluid subjected to a longitudinal magnetic field[J].Chinese journal of applied mechanics,2017,34(4):634-640(in Chinese)). [25] ERINGEN A C.Nonlocal continuum field theories[M].New York:Springer-Verlag,2002. [26] PEDDIESON J,BUCHANAN G R,MCNITT R P.Application of nonlocal continuum models to nanotechnology[J].International journal of engineering science,2003,41(3):305-312. [27] WANG Q.Wave propagation in carbon nanotubes via nonlocal continuum mechanics[J].Journal of applied physics,2005,98(12):124301-124306. [28] LIM C W,ZHANG G,REDDY J N.A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation[J].Journal of the mechanics and physics of solids,2015,78:298-313. [29] LI Li,HU Yujin.Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory[J].International journal of engineering science,2015,97:84-94. [30] LI Li,HU Yujin,LING Ling.Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory[J].Composite structures,2015,133:1079-1092. [31] LI Li,HU Yujin,LING Ling.Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory[J].Physical E,2016,75:118-124. [32] PAIDOUSSIS M P.Fluid-structure interactions slender structures and axial flow[M].San Diego:Academic Press,1998.

备注/Memo

备注/Memo:
-
更新日期/Last Update:
新金沙指定投注正网-金沙指定开户平台-澳门金沙官方网址多少