我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

随机激励下新型牵引式悬架系统的P-分岔分析

《应用力学学报》[ISSN:1000-4939/CN:61-1112/O3]

期数:
2019年02期
页码:
273-279
栏目:
出版日期:
2018-12-18

文章信息/Info

Title:
The P-bifurcation analysis of new traction suspension system with random excitation
作者:
田冲12刘习军12张素侠12
1 天津大学 机械工程学院力学系 300354 天津;2 天津市非线性动力学与混沌控制重点实验室 300354 天津
Author(s):
Tian Chong12 Liu Xijun12 Zhang Suxia12
1 School of Mechanical Engineering, Tianjin University, 300354,Tianjin, China; 2 Tianjin Key Laboratory of Nonlinear Dynamic and Chaos Control, 300354, Tianjin, China
关键词:
随机激励稳态概率密度曲线随机P-分岔平顺性
分类号:
TH132
DOI:
10.11776/cjam.36.02.D001
文献标识码:
A
摘要:
针对一种新型牵引式后悬架系统,本文建立了考虑刚度非线性和阻尼非线性的七自由度整车模型;通过分析车身振动位移与加速度的稳态概率密度曲线,研究了改进结构前后的悬架系统的随机P-分岔现象以及路面等级、车速、悬架刚度和悬架阻尼的变化对悬架系统发生随机P-分岔现象的影响。结果表明:改进后的结构发生了随机P-分岔现象;车速、悬架刚度、悬架阻尼的变化与引发悬架系统发生随机P-分岔有关,路面不平度的改变与引发随机P-分岔无关。通过分析车身加速度的概率密度曲线可以看出:改进结构后,汽车平顺性变好;随着悬架刚度、悬架阻尼、车速和路面等级的增加,汽车的平顺性变差。

参考文献/References

[1] 王知人,李瑾婷,王平.矩形夹层板的非线性磁弹性随机振动[J].应用力学学报,2015,32(3):359-365.(WANG Zhiren,LI Jinting,WANG Ping.Nonlinear random vibration of a rectangular sandwich plate in a magnetic field[J].Chinese journal of applied mechanics,2015,32(3):359-365(in Chinese)). [2] 朱位秋.非线性随机动力学与控制:Hamilton理论体系框架[M].北京:科学出版社,2003.(ZHU Weiqiu.Nonlinear stochastic dynamics and control:Hamilton theoretical framework[M].Beijing:Science Press,2003(in Chinese)). [3] 方永锋,陈建军,马洪波.共同随机载荷下结构动态可靠性分析[J].应用力学学报,2016,33(2):345-351.(FANG Yongfeng,CHEN Jianjun,MA Hongbo.Analysis of structural dynamic reliability under together stochastic loads[J].Chinese journal of applied mechanics,2016,33(2):345-351(in Chinese)). [4] HAN Q,XU W,SUN J Q.Stochastic response and bifurcation of periodically driven nonlinear oscillators by the generalized cell mapping method[J].Physica A statistical mechanics & its applications,2016,458:115-125. [5] XU Y,GU R,ZHANG H,et al.Stochastic bifurcations in a bistable Duffing-Van der Pol oscillator with colored noise[J].Physical review E,2011,83(5):056215. [6] 徐伟,杨贵东,岳晓乐.随机参激下Duffing-Rayleigh碰撞振动系统的P-分岔分析[J].物理学报,2016,65(21):61-66.(XU Wei ,YANG Guidong ,YUE Xiaole.P-bifurcations of a Duffing-Rayleigh vibro impact system under stochastic parametric excitation[J].Acta physica sinica,2016,65(21):61-66(in Chinese)). [7] 项盼,赵岩,林家浩.复合随机振动分析的自适应回归算法[J].应用力学学报,2015,32(6):934-941.(XIANG Pan,ZHAO Yan,LIN Jiahao.An adaptive regression algorithm for double random vibration analysis[J].Chinese journal of applied mechanics,2015,32(6):934-941(in Chinese)). [8] 刘培生.一种车辆后独立悬挂系统:105904922A[P]. 2016-08-31.(LIU Peisheng.A vehicle after independent suspension system:105904922A[P].2016-08-31(in Chinese)). [9] 邓涛,谭海鑫,李志飞,等.随机路面激励下车辆垂向振动微分几何解耦控制[J].噪声与振动控制,2017,37(6):1-6.(DENG Tao,TAN Haixin,LI Zhifei,et al.Differential geometry decoupling control of vehicle’s vertical vibration under random road excitations[J].Noise and vibration control,2017,37(6):1-6(in Chinese)). [10] 华艳秋,郭晓晓,张亮修,等.汽车空气悬架非线性混沌分析[J].公路交通科技,2017,34(4):123-129.(HUA Yanqiu,GUO Xiaoxiao,ZHANG Liangxiu,et al.Chaos analysis on nonlinearity of vehicle air suspension[J].Journal of highway and transportation research and development,2017,34(4):123-129(in Chinese)). [11] 王靖岳,王浩天,郭立新.随机激励下非线性空气悬架系统的混沌振动分析[J].合肥工业大学学报(自然科学版),2015(9):1165-1170.(WANG Jingyue,WANG Haotian,GUO Lixin.Analysis of chaotic vibration of nonlinear air suspension system under stochastic excitation[J].Journal of Hefei university of technology (natural science),2015(9):1165-1170(in Chinese)).

备注/Memo

备注/Memo:
-
更新日期/Last Update:
新金沙指定投注正网-金沙指定开户平台-澳门金沙官方网址多少