我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

考虑间隙内流的陶瓷隔热瓦气动载荷分析

《应用力学学报》[ISSN:1000-4939/CN:61-1112/O3]

期数:
2019年02期
页码:
267-272
栏目:
出版日期:
2018-12-18

文章信息/Info

Title:
Analysis of aerodynamic loads of ceramic tiles considering internal flow
作者:
刘悦1胡淑玲1夏巍12
1 西安交通大学 航天航空学院机械结构强度与振动国家重点实验室 710049 西安; 2 西安交通大学 陕西省航天结构振动控制工程实验室 710049 西安
Author(s):
Liu Yue1 Hu Shuling1 Xia Wei12
1 State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, 710049, Xi’an, China; 2 Shaanxi Engineering Laboratory for Vibration Control of Aerospace Structures, Xi’an Jiaotong University, 710049, Xi’an, China
关键词:
热防护系统陶瓷隔热瓦间隙内流多孔介质渗流气动载荷
分类号:
V211.41
DOI:
10.11776/cjam.36.02.A063
文献标识码:
A
摘要:
陶瓷隔热瓦是高速飞行器热防护系统的重要结构。跨声速飞行过程中,当激波在飞行器表面形成压力突变,在激波压力梯度作用下隔热瓦中会产生严重的间隙内流。瓦与瓦之间的间隙内流、隔热瓦和应变隔离垫中的多孔介质渗流都会对陶瓷隔热瓦的气动载荷产生显著影响。采用纳维-斯托克斯方程和Spalart-Allmaras湍流模型,建立了考虑间隙内流和应变隔离垫渗流的隔热瓦载荷计算模型,对隔热瓦的间隙内流、应变隔离垫渗流和隔热瓦载荷进行了FLUENT数值仿真。计算结果与NASA实验结果的偏差不超过3.3%。在此基础上,研究了应变隔离垫的渗流系数、间隙宽度对隔热瓦载荷的影响规律。计算结果表明:①本文方法考虑间隙流的局部损失,理论精度高于线性蠕流理论,对比本文计算结果和蠕流线性公式结果,压力偏差在间隙流动的拐角处高达10.6%;②随材料Darcy粘性系数增大,应变隔离垫渗流的压力梯度先增加后减小;③如果隔热瓦在波后高压作用下发生位移,使得瓦与瓦之间的间隙宽度改变,则间隙流入口处(高压端)间隙宽度的增加,会导致陶瓷隔热瓦底部受到的气动载荷增大。

参考文献/References

[1] RODRIGUEZ A C,SNAPP C G.Orbiter thermal protection system lessons learned[C]//Proceedings of AIAA SPACE Conference & Exposition.Long Beach,California:AIAA,2011. [2] WU Dafang,WANG Yuewu,GAO Zhentong.Insulation performance of heat-resistant material for high-speed aircraft under thermal environments[J].Journal of materials engineering and performance,2015,24(9):3373-3385. [3] 彭治雨,石义雷,龚红明,等.高超声速气动热预测技术及发展趋势[J].航空学报,2015,36(1):325-345.(PENG Zhiyu,SHI Yilei,GONG Hongming,et al.Hypersonic aeroheating prediction technique and its trend of development[J].Acta aeronautica et astronautica sinica,2015,36(1):325-345(in Chinese)). [4] COOPER P A,HOLLOWAY P F.The shuttle tile story[J].Astronautics & aeronautics,1981,19(1):24-36. [5] 张幸红,胡平,韩杰才,等.超高温陶瓷复合材料的研究进展[J].科学通报,2015,60(3):257-266.(ZHANG Xinghong,HU Ping,HAN Jiecai,et al.Research progress on ultra-high temperature ceramic composites[J].Chinese science bulletin,2015,60(3):257-266(in Chinese)). [6] 杨亚政,杨嘉陵,方岱宁.高超声速飞行器热防护材料与结构的研究进展[J].应用数学和力学,2008,29(1):47-56.(YANG Yazheng,YANG Jialing,FANG Daining.Research progress on the thermal protection materials and structures in hypersonic vehicles[J].Applied mathematics and mechanics,2008,29(1):47-56(in Chinese)). [7] PETLEY D H,ALEXANDER W,IVEY G W,et al.Steady internal flow and aerodynamic loads analysis of shuttle thermal protection system[R].Hampton,Virginia:National Aeronautics and Space Administration,1984. [8] COOPER P A,SAWYER J W.Life considerations of the shuttle orbiter densified-tile thermal protection system[C]//Proceedings of Shuttle Performance:Lessons Learned,Pt.2.Washington:[s.n.],1983. [9] MURACA R J.Shuttle tile environments and loads[J].Journal of the acoustical society of America,2013,70(70):91. [10] 冯宇鹏,夏巍,蒋劲松,等.考虑间隙内流的二元机翼跨声速气动力分析[J].飞行力学,2016,34(6):15-19.(FENG Yupeng,XIA Wei,JIANG Jingsong,et al.Transonic aerodynamic loads of airfoil considering internal flow of gaps[J].Flight dynamics,2016,34(6):15-19(in Chinese)). [11] 李宇峰,贺利乐,张璇,等.典型热防护壁板结构的热模态分析[J].应用力学学报,2017,34(1):43-49.(LI Yufeng,HE Lile,ZHANG Xuan,et al.Thermal modal analysis of typical thermo-defend panel structure[J].Chinese journal of applied mechanics,2017,34(1):43-49(in Chinese)). [12] 杨庆超,柴凯,楼京俊,等.柔性基础准零刚度隔振系统动力学特性分析[J].应用力学学报,2018,35(1):70-74.(YANG Qingchao,CHAI Kai,LOU Jingjun,et al.Dynamic characteristic analysis of quasi-zero stiffness vibration isolation system with flexible foundation[J].Chinese journal of applied mechanics,2018,35(1):70-74(in Chinese)). [13] LAWING P L.A prediction method for flow in the shuttle tile strain isolation pad:87-1510[R].Hampton,Virginia:AIAA,1987. [14] LAWING P L,NYSTROM D M.Pressure drop characteristics for shuttle orbiter thermal protection system components:TM-81891[R].Hampton,Virginia:NASA,1980. [15] 邱波,国义军,张昊元,等.来流参数对防热瓦横缝旋涡结构及热环境的影响[J].航空学报,2016,37(3): 761-770.(QIU Bo,GUO Yijun,ZHANG Haoyuan,et al.Numerical investigation for free stream parameters effects vortexes and aerodynamic heating environment in thermal protection tile transverse gaps[J].Acta aeronautica et astronautica sinica,2016,37(3):761-770(in Chinese)). [16] 邱波,张昊元,国义军,等.高超声速飞行器表面横缝旋涡结构及气动热环境数值模拟[J].航空学报,2015,36(11):3515-3521.(QIU Bo,ZHANG Haoyuan,GUO Yijun,et al.Numerical investigation for vortexes and aerodynamic heating environment on transverse gap on hypersonic vehicle surface[J].Acta aeronautica et astronautica sinica,2015,36(11):3515-3521(in Chinese)). [17] YAMADA T,MATSUDA S,OKUYAMA K,et al.Lessons learned from the recovered heatshield of the USERS REV capsule[J].Acta astronautica,2008,62(2):192-202. [18] BLEVINS Robert D,HOLEHOUSE Ian,WENTZ Kenneth R. Thermoacoustic loads and fatigue of hypersonic vehicle skin panels[J].Journal of aircraft,1993,30(6):971-978. [19] SPRINGFIELD R D,LAWING P L.Flow rate/pressure drop data gathered from testing a sample of the Space Shuttle Strain Isolation Pad(SIP):effects of ambient pressure combined with tension and compression conditions: TM-84591[R].Hampton,Virginia:NASA,1983. [20] DOUGLAS L D,PERRY A N,FRANK C T.A title-gap flow model for use in aerodynamic loads assessment of space shuttle thermal protection system:parallel gap faces:TM-83151[R].Hampton,Virginia:NASA,1981.

备注/Memo

备注/Memo:
-
更新日期/Last Update:
新金沙指定投注正网-金沙指定开户平台-澳门金沙官方网址多少